Расширенный поиск
21 Декабря  2024 года
Логин: Регистрация
Пароль: Забыли пароль?
  • Биреуге аманлыкъ этиб, кесинге игилик табмазса.
  • Къыз келсе, джумуш эте келеди, къатын келсе, ушакъ эте келеди.
  • Биреу къой излей, биреу той излей.
  • Тулпарлыкъ, билекден тюл – джюрекден.
  • Ишленмеген джаш – джюгенсиз ат, ишленмеген къыз – тузсуз хант.
  • Мухарны эси – ашарыкъда.
  • Тёрде – темир таякълы, къаяда – чыпчыкъ аякълы.
  • Ишлегенде эринме, ишде чолакъ кёрюнме.
  • Суу да къайтады чыкъгъан джерине.
  • Хоншуну тауугъу къаз кёрюнюр, келини къыз кёрюнюр.
  • Ариу – кёзге, акъыл – джюрекге.
  • Тойгъан джерден туугъан джер игиди.
  • Джыгъылгъанны сырты джерден тоймаз.
  • Баланы адам этген анады.
  • Аз айтсам, кёб ангылагъыз.
  • Кирсизни – саны таза, халалны – къаны таза.
  • Къонакъ аз олтурур, кёб сынар.
  • Абынмазлыкъ аякъ джокъ, джангылмазлыкъ джаякъ джокъ.
  • Иги адамны бир сёзю эки болмаз.
  • Ата – баланы уясы.
  • Ана къойну – балагъа джандет.
  • Бек ашыкъгъан меннге джетсин, дегенди аракъы.
  • Сёз садакъдан кючлюдю.
  • Эр абынмай, эл танымаз.
  • Эки ойлашыб, бир сёлешген.
  • Огъурлуну сёзю – суу, огъурсузну сёзю – уу.
  • Ашхылыкъ джерде джатмайды, аманлыкъ суугъа батмайды.
  • Аууздан келген, къолдан келсе, ким да патчах болур эди.
  • Байлыкъдан саулукъ ашхыды.
  • Эрни эр этерик да, къара джер этерик да, тиширыуду.
  • Ёпкелегенни ашы татлы болады.
  • Тюз сёз баргъан сууну тыяр.
  • Тойгъан джерге джети къайт.
  • Къарнынг ауруса, ауузунгу тый
  • От этилмеген джерден тютюн чыкъмайды.
  • Ишлемеген – тишлемез.
  • Бойнуму джети джерден кессенг да, мен ол ишни этеллик тюлме.
  • Адамны адамлыгъы къыйынлыкъда айгъакъланады.
  • Терслик кетер, тюзлюк джетер.
  • Бал чибинни ургъаны – ачы, балы – татлы.
  • Джангыз терек къынгыр ёсер.
  • Рысхы джалгъанды: келген да этер, кетген да этер.
  • Чарсда алчыны эл кёреди.
  • Джолда аягъынга сакъ бол, ушакъда тилинге сакъ бол.
  • Тели турса – той бузар.
  • Уллу къашыкъ эрин джыртар.
  • Тойчу джашха къарама, къойчу джашха къара.
  • Эртде тургъан джылкъычыны эркек аты тай табар.
  • Тюзню ётмеги тюзде къалса да, тас болмаз.
  • Сагъыш – къартлыкъгъа сюйюмчю.
Выбрать дату в календареВыбрать дату в календаре

Страницы: 1
"НАУЧПОП" (НАУЧНО-ПОПУЛЯРНАЯ ЛИТЕРАТУРА), В этой теме будут публиковаться только научно-популярные материалы на различную тематику из текстов написанных либо самими учеными, либо профессионалами научной журналистики. Поэтому тема открывается в разделе «Наука и образование».
 
Начнем с математической дисциплины, поскольку математика учит мыслить в русле строгой логики. Математика — удивительная наука. С одной стороны, она существует и развивается как вещь в себе, совершенно не нуждаясь ни в чем, кроме себя самой, с другой — используется представителями других наук как прикладная дисциплина, что, тем не менее, опять же приводит к обогащению ее собственного инструментария. Можно уверенно сказать, что не появись математика, не был бы возможен никакой научно-технический прогресс и люди до сих пор продолжали бы жить первобытно-общинным строем.Писать научно-популярные книги на математические темы берется далеко не каждый математик, поскольку для этого нужно иметь незаурядные литературные способности и хорошее воображение, чтобы увлечь рассказом о «царице наук» обычных читателей, большинству которых эта наука представляется слишком сложной и маловразумительной. Знаменитый американский физик и математик Леонард Млодинов, написавший не одну увлекательную научно-популярную книгу по математике и естественным наукам, всегда блестяще справляется с такой задачей. Он рассказывает о сложных вещах простым внятным языком и с юмором, отчего чтение его книг приносит огромное удовольствие.

ЛЕОНАРД МЛОДИНОВ
ЕВКЛИДОВО ОКНО. ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Леонард Млодинов (Leonard Mlodinow, 1954, Чикаго) — американский физик и популяризатор науки, специалист по квантовой теории и теории хаоса, преподает введение в теорию вероятностей, статистику и теорию случайных процессов в Калифорнийском технологическом институте в Пасадене. В 1976 году окончил Университет Брандейса в Уолтхэме (Массачусетс) сразу по двум специальностям — математике и физике. В 1981 году получил докторскую степень по теоретической физике в Калифорнийском университете в Беркли. Автор нескольких научно-популярных книг (в том числе для детей), а также создатель текстов для телевизионных научно-популярных передач.

Двадцать четыре века назад один грек стоял у берега моря и смотрел, как исчезают вдали корабли. Аристотель, судя по всему, проводил за таким тихим занятием немало времени и повидал немало кораблей, раз его однажды посетила интересная мысль. Все корабли исчезали одинаково – сначала корпус, потом мачты и паруса. Он задумался: как такое может быть? На плоской Земле корабли должны были уменьшиться целиком и исчезнуть, превратившись в нераспознаваемую точку. Но корпус исчезал первым, а уж потом все остальное – и это подтолкнуло Аристотеля к подлинному озарению: Земля – искривлена. Аристотель взглянул на общее устройство нашей планеты через окно геометрии.

Греки первыми осознали, что природу можно постичь, применив математику, а геометрия может не только описывать, но и объяснять. Развивая геометрию от простых описаний камня и песка, греки извлекли понятия точки, линии и плоскости. Отбросив вуаль материи, они обнаружили структуру такой красоты, какой человечество еще не видело. Евклид стоит как раз на пике борьбы за изобретение математики. История Евклида есть история революции, история аксиомы, теоремы, доказательства – и рождения разума как такового.

Люди считали и вычисляли, драли налоги и облапошивали друг друга с незапамятных времен. Некоторые предположительно счетные орудия датируются 30000 лет до н.э. – всего лишь палки, расписанные художниками с интуитивным математическим чутьем. Но есть и поразительно отличные приспособления. На берегах озера Эдвард (ныне Демократическая Республика Конго) археологи выкопали небольшую кость 8000-летней давности с крошечным кусочком кварца, вделанным в углубление на одном конце. Автор этого приспособления – художник или математик, мы никогда уже не узнаем, – вырезал на кости три колонки насечек. Ученые считают, что эта кость, названная костью Ишанго,– возможно, самый древний из найденных прибор для численной записи.
Мысль об осуществлении операций с числами доходила гораздо медленнее, поскольку занятия арифметикой подразумевают некоторую степень абстракции. Антропологи сообщают: если два охотника выпустили две стрелы, завалили двух газелей и заработали две грыжи, волоча добычу к стоянке, во многих племенах все эти «два» и «две» могли быть разными понятиями в каждом случае. В таких цивилизациях нельзя было складывать яблоки с апельсинами. Похоже, на понимание того, что все это частные случаи одного и того же понятия – абстрактного числа 2, – потребовались тысячи лет.

Открытие того, что математика – нечто большее, нежели алгоритмы расчетов объемов грунта или размеров налогов, принадлежит одинокому греческому купцу, ставшему философом; его звали Фалес, и свершилось это открытие 2500 лет назад. Именно Фалес создал возможность для великих открытий пифагорейцев и, в итоге, написания самих «Начал» Евклида. Он жил во времена, когда по всему миру вдруг так или иначе зазвонили будильники, и человеческий разум проснулся. В Индии рожденный примерно в 560 году до н.э. Сиддхартха Гаутама Будда начал распространение буддизма. В Китае Лао-цзы и его более юный современник Конфуций, появившийся на свет в 551 году до н.э., совершили прорыв в мышлении – с колоссальными последствиями. В Греции же начался Золотой век.

Фалес, судя по всему, как и многие греки Золотого века, обладал неутолимой жаждой знаний. Посещая Вавилон, он впитывал учение и математику астрономии – и прославился тем, что привез это знание в Грецию. Одно из легендарных достижений Фалеса – предсказание солнечного затмения 585 года до н.э. Геродот сообщает, что оно произошло в разгар битвы, и благодаря ему сражение прекратилось и воцарился долгий мир.
Фалес сделал первые шаги по систематизации геометрии. Он первым доказал геометрические теоремы, подобные тем, что Евклид века спустя собрал в «Началах». Осознав необходимость неких правил, из которых можно обоснованно делать дальнейшие выводы, Фалес изобрел первую систему логического мышления. Он первым осмыслил понятие о сравнимости пространственных фигур: две фигуры на плоскости можно считать равными, если можно так сдвинуть и повернуть одну, чтобы она в точности совпала с другой. Расширение идеи равенства чисел до фигур в пространстве оказалось громадным рывком математизации пространства. Это не так очевидно, как может показаться нам, усвоившим это еще в школьные годы. На самом деле – и мы еще в этом убедимся – такой вывод требует допущения однородности, т.е. что фигура не искажается и не меняется в размерах при движении, а это не так для некоторых пространств, включая наше физическое. Фалес сохранил для своей математики египетское название – «измерение земли»,– однако перевел его на родной язык, и получилась «геометрия».

Пифагор послушался советов Фалеса и отправился в Египет, но в тамошней математике не обрел поэзии. Геометрические объекты были физическими сущностями. Линия оказалась веревкой, натянутой гарпедонаптом, или кромкой пашни. Прямоугольник – границами участка земли или поверхностью каменной плиты. Пространство – илом, почвой и воздухом. Именно грекам, а не египтянам принадлежит романтическое, метафорическое представление математики: пространство может быть математической абстракцией и, что не менее важно, абстракция эта может быть применена в самых разных обстоятельствах. Иногда линия – это просто линия. Но в то же время линия может представлять и ребро пирамиды, и границу пашни, и путь вороны в небе. Знание об одном переносимо на другое. По преданию, Пифагор шел как-то мимо кузни и услышал, как по тяжелой наковальне стучат разные молоты. Он задумался. Повозившись со струнами, он обнаружил гармонические последовательности, а также связь между длиной поющей струны и тоном слышимой музыкальной ноты. Струна вдвое длиннее, например, поет в два раза ниже. Наблюдение с виду простое, однако глубина его революционна – его часто считают первым в истории примером эмпирического открытия закона природы.

Для Пифагора и его последователей главной интригой математики виделись разнообразные численные закономерности. Пифагорейцы представляли себе числа как камешки или точки, выложенные в определенный геометрический узор. Они обнаружили, что некоторые числа можно сложить, разместив камешки на равном расстоянии в два столбика по два, в три по три и т.д. – так, чтобы получался квадрат. Пифагорейцы называли любое количество камешков, которые можно выложить таким способом, «квадратным числом», поэтому и мы зовем их до сих пор квадратами: 4, 9, 16 и т.д. Другие числа, как выяснили пифагорейцы, можно выложить так, чтобы получались треугольники: 3, 6, 10 и т.д. Свойства квадратных и треугольных чисел завораживали Пифагора. Например, второе квадратное число, 4, равно сумме первых двух нечетных чисел, 1 + 3. Третье квадратное число, 9, равно сумме первых трех нечетных чисел, 1 + 3 + 5, и т.д. (То же верно и для первого квадрата: 1 = 1.) Пифагор заметил и то, что, подобно равенству квадратных чисел сумме соответствующих предыдущих нечетных чисел, треугольные числа есть сумма всех последовательных чисел, четных и нечетных. Да и сами квадратные и треугольные числа взаимосвязаны: если сложить треугольное число с предыдущим или следующим треугольным, получится квадратное число.

Пифагор был фигурой харизматической и гением, но и в части саморекламы не подкачал. В Египте он не только постигал египетскую геометрию, но стал первым греком, изучившим египетские иероглифы, и в конце концов занял пост египетского жреца – ну или во всяком случае его посвятили в их ритуалы. Он получил доступ ко всем таинствам – и даже был вхож в секретные храмовые залы. Он провел в Египте не менее тринадцати лет. И покинул страну не по собственной воле – напали персы и взяли его в плен. Пифагор оказался в Вавилоне, где в итоге получил свободу – а заодно разобрался в вавилонской математике. В пятьдесят он в конце концов вернулся на Самос. К тому времени он уже развил философию пространства и математики, которую собирался проповедовать.

Соверши Пифагор простую вещь: назови он диагональ как-нибудь особо, например d, или еще того лучше – √2 и сочти ее некой новой разновидностью числа, нашему гению удалось бы ускорить создание системы действительных чисел на много веков. Предприми Пифагор этот шаг, он предвосхитил бы революцию декартовых координат, поскольку за отсутствием численной записи необходимость как-то описать этот новый вид числа недвусмысленно подсказывала изобретение числовой оси. Однако вместо всего этого Пифагор отошел от своей весьма перспективной практики ассоциировать геометрические фигуры с числами и заявил, что некоторые длины не могут быть выражены через числа. Пифагорейцы назвали такие длины алогонами, «неразумными», ныне мы называем их иррациональными. У слова «алогон» – двойной смысл: оно к тому же еще и означает «непроизносимое». Пифагор предложил решить возникшую в его философии дилемму так, что полученное решение было затруднительно отстаивать, и поэтому, в соответствии с общей доктриной скрытности, он запретил своим последователям раскрывать неловкий парадокс. В наши дни людей убивают много за что – из-за любви, политики, денег, религии, но не потому, что кто-то разболтал что-то о квадратном корне из двух. Для пифагорейцев же математика была религией, и поэтому когда Гиппас нарушил обет молчания, его убили.

Сопротивление иррациональному продолжалось еще тысячи лет. В конце XIX века, когда одаренный немецкий математик Георг Кантор создал революционный труд, в котором попытался как-то укоренить эти числа, его бывший наставник, хрыч по имени Леопольд Кронекер, «возражавший» против иррациональных чисел, категорически не согласился с Кантором и потом всю жизнь ставил ему палки в колеса. Кантор, не в силах вынести подобное, пережил нервный срыв и провел последние дни жизни в клинике для душевнобольных.

Математика – вертикальное сооружение, которое, в отличие от архитектурной постройки, рухнет, если хоть один математический кирпичик окажется битым. Допусти в системе невиннейшую погрешность – и пиши пропало, в ней уже ничему нельзя доверять. По сути, теорема логики утверждает: если в систему вкралась хоть одна ложная теорема – неважно, о чем она, – этого будет достаточно для доказательства, что 1 = 2. Говорят, однажды некий скептик припер к стенке логика Бертрана Расселла, желая возразить против этой уничтожающей теоремы (хотя в итоге говорил об обратном). «Вот что, – рявкнул усомнившийся, – допустим, один равно два, докажите, что вы – Папа Римский». Расселл, по свидетельствам, задумался на миг, после чего ответил: «Папа и я – двое, следовательно, Папа и я – одно».

Приблизительно в 300-е годы до н.э. на южном побережье Средиземного моря, чуть левее Нила, жил в Александрии человек, чья работа может потягаться по влиятельности с Библией. Его подход наполнил философию смыслом и определил суть математики вплоть до XIX века. Эта работа стала неотъемлемой частью высшего образования практически на все это время – и остается до сих пор. С восстановлением этого труда началось обновление средневековой европейской цивилизации. Ему подражал Спиноза. Им зачитывался Абрахам Линкольн. Его защищал Кант. Имя этого человека – Евклид. О его жизни нам неизвестно почти ничего. Ел ли он оливки? Ходил ли в театр? Был ли коренаст или росл? История не знает ответов на все эти вопросы. Нам ведомо лишь, что он открыл школу в Александрии, у него были блестящие ученики, он осуждал материализм, был довольно милым человеком и написал не менее двух книг. Одна из них, утерянный труд по коническим сечениям, стала основой для позднейшей исключительно важной работы Аполлония, сильно продвинувшей науку навигации и астрономии.
Другая его знаменитая работа, «Начала», – одна из самых читаемых «книг» всех времен. История «Начал» заслуживает детективного романа не хуже «Мальтийского сокола». Во-первых, это не книга в буквальном смысле, но собрание из тринадцати свитков папируса. Ни один оригинал не сохранился – они передавались из поколения в поколение чередой переизданий, а в Темные века чуть было не исчезли совсем. Первые четыре свитка Евклидова труда в любом случае – не те самые «Начала»: ученый по имени Гиппократ (не врач-тезка) написал «Начала» где-то в 400-х годах до н.э., и они-то, судя по всему, являются содержимым этих первых свитков, хотя оно никак не атрибутировано. Евклид никак не претендовал на авторство этих теорем. Свою задачу он видел в систематизации греческого понимания геометрии. Он стал архитектором первого осмысленного отчета о природе двухмерного пространства, созданного одной лишь силой мысли, без всяких отсылок к физическому миру.

Целью Евклида было построить систему так, чтобы в ней не оставалось места для нечаянных допущений, основанных на интуиции, угадывании или приблизительности. Он ввел двадцать три определения, пять геометрических постулатов и пять дополнительных постулатов, которые он назвал «Общими утверждениями». На этом фундаменте он доказал 465 теорем – практически все геометрическое знание его времени. Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, – писал он, – это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».

Музей и библиотека сделали Александрию непревзойденным интеллектуальным центром планеты, местом, где величайшие ученые бывшей империи Александра изучали геометрию и свойства пространства.

В 212 году до н.э. главный библиотекарь Александрии Эратосфен Киренский человек, преодолевший за всю жизнь не более нескольких сотен миль, первым в истории рассчитал обхват Земли.

Эратосфен заметил, что в полдень в городе Сиене (ныне Асуан) во время летнего солнцестояния палка, воткнутая в землю, не отбрасывает тени. Для Эратосфена это означало, что палка, воткнутая в землю, оказывалась параллельна солнечным лучам. Если представить Землю в виде окружности и нарисовать прямую из центра через точку на поверхности, представляющую Сиене, и далее в пространство, она окажется тоже параллельной лучам солнца. Теперь двинемся по прямой на поверхности Земли прочь из Сиене – в Александрию. Там вновь нарисуем линию, проведенную из центра Земли через точку-Александрию. Эта линия уже не будет параллельна лучам солнца – она пересекает их под некоторым углом, оттого и появляется видимая тень. Эратосфену для вычисления части земной окружности – арки между Сиене и Александрией – хватило длины тени от палки, воткнутой в Александрии, и теоремы из «Начал» о линии, пересекающей две параллельные прямые. Он обнаружил, что эта дуга составляет одну пятидесятую от длины обхвата Земли. Подтянув к делу, вероятно, первого в истории научного ассистента, Эратосфен нанял некого безымянного гражданина, чтобы тот прошел пешком от одного города к другому и замерил расстояние. Нанятый субъект прилежно доложил, что оно составляет примерно 500 миль. Умножив это расстояние на 50, Эратосфен определил обхват Земли в 250 000 миль – с четырехпроцентной погрешностью, а это фантастически точный результат, за который ему бы наверняка дали Нобелевскую премию, а его безымянному ходоку, быть может, – постоянную ставку в библиотеке.

Астроном Аристарх Самосский, также трудившийся в Александрии, применил гениальный, хоть и довольно затейливый метод, объединивший тригонометрию и простенькую модель небес, для расчета вполне осмысленной приблизительной величины Луны и расстояния до нее. Еще раз подчеркнем: у греков возникло новое представление об их месте во Вселенной.

Еще одна знаменитость, привлеченная Александрией, – Архимед. Родившись в Сиракузах, городе на острове Сицилия, Архимед приехал в Александрию учиться в великой школе математиков. Мы, быть может, и не знаем, кем был тот гений, что впервые обточил камень или дерево до округлой формы и поразил изумленных зевак явлением первого колеса, но мы точно знаем, кто открыл принцип рычага: Архимед. Он, кроме того, открыл принципы гидростатики и много разного привнес в физику и инженерное дело. Математику он поднял на такую высоту, выше которой без инструментария символьной алгебры и аналитической геометрии забраться было невозможно еще около восемнадцати веков. Одно из достижений Архимеда в математике – доведение до совершенства методов матанализа, не слишком далеких от предложенных Ньютоном и Лейбницем. С учетом отсутствия картезианской геометрии это достижение смотрится еще более впечатляющим. Главной победой, одержанной с помощью его метода, сам Архимед считал определение объема сферы, вписанной в цилиндр (т.е. сферы, радиус которой равен радиусу и высоте цилиндра), – он равен двум третям объема этого цилиндра. Архимед так гордился этим открытием, что потребовал высечь изображение шара в цилиндре на своем надгробии.

И астрономия в Александрии тоже достигла пика развития: во II веке до н.э. – стараниями Гиппарха, а во II веке н.э.– Клавдия Птолемея (не родственника царя). Гиппарх наблюдал небеса тридцать пять лет, сложил свои наблюдения с данными вавилонян и разработал модель Солнечной системы, согласно которой пять известных тогда планет, Солнце и Луна двигались по общей круговой орбите вокруг Земли. Ему так ловко удалось описать движение Солнца и Луны, как это видно с Земли, что он мог предсказывать лунные затмения с точностью до пары часов. Птолемей усовершенствовал и расширил эти результаты в книге «Альмагест», осуществив мечту Платона дать рациональное объяснение движению небесных тел, и она была главным астрономическим трудом вплоть до Коперника. Птолемей также написал книгу под названием «География», которая описывала земное мироздание. Картография – предмет крайне математичный, поскольку карты – плоские, Земля – почти сферическая, а сферу нельзя описать при помощи плоскости, сохранив при этом точными и расстояния, и углы. «География» – начало серьезной картографии.

Поскольку Рим завоевал Грецию, римляне получили доступ к интеллектуальному достоянию греков. Наследники греческих традиций покорили бо́льшую часть мира и столкнулись со многими техническими и инженерными трудностями, однако их императоры не поддерживали математику так, как это делали Александр или Птолемей Египетский, и цивилизация их не произвела на свет ни одного математического гения масштабов Пифагора, Евклида или Архимеда. За 1100 лет их правления – с 750 года до н.э.– история не помнит ни одной доказанной римлянами теоремы и ни одного математика.

Последним великим ученым, работавшим в Александрийской библиотеке, оказалась Гипатия, первая великая женщина-ученый, чье имя сохранила для нас история. Она родилась в Александрии около 370 года н.э. в семье знаменитого математика и философа Теона. Теон выучил дочь математике. Она стала его ближайшим сотрудником и в конце концов полностью затмила его.

Гипатия считала себя интеллектуальной наследницей Платона и Пифагора – никак не Христианской церкви. Некоторые утверждают, что она даже училась в Афинах, где удостоилась лаврового венка, а им награждали лучших афинских учеников; по возвращении в Александрию Гипатия надевала этот венок при всяком появлении на публике. Судя по всему, это она написала важные комментарии к двум знаменитым греческим трудам – «Арифметике» Диофанта и «Коническим сечениям» Аполлония; эти работы читают и поныне.

15 октября 412 года умер христианский архиепископ Александрии. Ему наследовал его племянник по имени Кирилл, которого часто описывают как субъекта жадного до власти и в целом неприятного.

Однажды утром, во время Великого поста 415 года Гипатия взошла на колесницу – по некоторым сведениям, рядом со своим домом, а по некоторым – на улице по дороге к дому. Несколько сотен Кирилловых прихвостней – христианских монахов из некого монастыря в пустыне – набросились на нее, избили и потащили в церковь. В церкви ее раздели догола и ободрали с нее плоть то ли заостренной черепицей, то ли глиняными черепками. После чего порвали ее на куски и сожгли останки. Согласно одному свидетельству, части ее тела разбросали по всему городу. Все работы Гипатии уничтожили. Вскоре та же участь постигла и остатки библиотеки.

По оценкам недавних исторических исследований, на одного знаменитого математика в истории человечества приходится три миллиона человек. Ныне исследовательские труды широко доступны по всему миру.

Гипатия была воплощением греческой науки и рационализма. С ее смертью наступила гибель греческой культуры.

Две координаты, описывающие в наши дни положение на поверхности Земли, называются «широта» и «долгота». Представить их можно так: поместим в наш умозрительный ящик с инструментами три точки, две линии и шар. Берем шар и представляем его плавающим в пространстве. Он, понятно, символизирует Землю. Затем разместим на нем три точки в следующем порядке: одну – на Северном полюсе, одну – в центре, а третью – в любом месте на поверхности. Первой линией из нашего набора соединим Северный полюс и центр Земли. Это ось вращения планеты. Второй линией соединим центральную точку и точку на поверхности. Она окажется под некоторым углом к оси Земли. Этот угол, независимо от способа обозначения, определяет вашу широту. Исходная идея широты пришла на ум античному метеорологу по имени Аристотель. Изучив влияние местоположения на Земле на климат в данной точке, он предложил поделить земной шар на пять климатических зон исходя из их положения относительно севера и юга. Эти зоны со временем включили в карты и провели между ними линии постоянных широт. Теория Аристотеля предполагает, что широту можно определить, хоть и приблизительно, исходя из климата местности: холоднее всего на полюсах, а чем ближе к экватору, тем теплее. Ясное дело, в некоторые дни в Стокгольме может быть теплее, чем в Барселоне, а значит, этот метод не слишком практичен – если только не торчать подолгу на одном месте, наблюдая за погодой. Лучше определять широту, ориентируясь по звездам. Проще всего это делать, найдя звезду, расположенную вдоль оси Земли. И такая звезда в северном полушарии есть, называется она «Полярная». Полярная звезда полярной была не всегда – земная ось по отношению к звездам не зафиксирована на одном месте. Она прецессирует, описывая узкий конус примерно за 26000 лет. В некоторых великих пирамидах Древнего Египта есть проходы, выстроенные вдоль линии, проходящей через альфу Дракона: во времена постройки пирамид полярной была именно эта звезда. Древним грекам оказалось труднее: им настоящей полярной звезды было не видать. Всего через 10 000 лет северную полярную звезду наблюдать будет очень просто: ею станет Вега, ярчайшая звезда северного неба. Если есть возможность видеть одновременно Полярную звезду и линию горизонта на севере, простая геометрия показывает, что угол между линиями от вас до Полярной звезды и от вас до горизонта и есть приблизительное значение широты. Приблизительное оно оттого, что предполагает размещение Полярной звезды точно вдоль оси Земли и что радиус Земли пренебрежимо мал по сравнению с расстоянием до этой звезды; оба этих приближения годны, однако не идеально точны. В 1700 году Исаак Ньютон изобрел секстант – прибор, облегчающий процесс вычисления широты этим способом. Заблудившийся путешественник мог, тем не менее, применить и старинный метод, сделав угломер из двух палок. Долготу определить труднее. Добавим к нашему инструментарию еще одну сферу – гораздо бо́льшую, чем Земля, с Землей в качестве ядра. На этой сфере вообразим звездную карту. Если бы Земля не вращалась, долготу можно было бы измерять, соотносясь с этой картой. Однако вращение Земли приводит к тому, что звездная карта, видимая вам, через мгновение станет картой, видимой вашему соседу, расположенному чуть западнее вас. Говоря совсем точно, коль скоро Земля совершает оборот в 360° за 24 часа, наблюдатель западнее вас на 15° увидит то же небо, что и вы, буквально через час. На экваторе эта разница соответствует примерно 1000 миль. Сравнение двух фотоснимков звезд, сделанных на одной широте, но без указания времени съемки, ничего не сообщает о вашей долготе. Напротив, если сравнить снимки, сделанные на одной широте и в одно время ночи, можно определить разницу в долготах. Но для этого нужны часы.
Аж до XVIII века не существовало часов, способных выдерживать движение, температурные перепады и соленый влажный воздух, непременные на морских судах, и при этом идти так точно, чтобы по ним в безбрежном океане можно было определять долготу. Удовлетворить требование к точности оказалось непросто: ошибка всего в три секунды в день за шестинедельное путешествие соответствует ошибке в определении долготы более чем на полградуса. До XIX века, к тому же, существовало множество разных систем определения долготы. Наконец в октябре 1884 года удалось договориться об одном меридиане на весь мир, назначить его «нулевой» долготой и от него отсчитывать разницу. Этот главный меридиан проходит через Королевскую обсерваторию в Гринвиче, неподалеку от Лондона.
Страницы: 1

Форум  Мобильный | Стационарный